It is possible to learn many of the important attributes of a given (continuous) function, by examining its first and second derivatives. Some of these attributes are listed below:

1) Intervals on which the function is either increasing or decreasing
a) If $f^{\prime}>0$ on an interval, then f is increasing on that interval
b) If $f^{\prime}<0$ on an interval, then f is decreasing on that interval
2) Intervals on which the function is either concave up or concave down.
a) If $f^{\prime \prime}>0$ on an interval, then f is concave up on that interval
b) If $f^{\prime \prime}<0$ on an interval, then f is concave down on that interval
3) Finding local maxima and minima (a.k.a. local extrema)
a) Find all critical points (points where $f^{\prime}=0$ or f^{\prime} is undefined)
b) Classify each critical point as a local max, local min, or neither
i) If $f^{\prime}=0$, then try using the $2^{\text {nd }}$ derivative test.
(1) If $f^{\prime}=0$ and $f^{\prime \prime}>0$, then the critical point is a local minimum
(2) If $f^{\prime}=0$ and $f^{\prime \prime}<0$, then the critical point is a local maximum
(3) If $f^{\prime \prime}=0$, then the test is inconclusive (so use the $l^{\text {st }}$ derivatives test below)
ii) The $1^{s t}$ Derivatives Test: If f^{\prime} is undefined or $f^{\prime \prime}=0$, then it is necessary to classify the point by examining if f^{\prime} changes signs at the critical point.

The critical points break the real number line into intervals on which f^{\prime} is either positive or negative. So, to determine the sign of f^{\prime} on a given interval, it is only necessary to test one point in that interval.
(a) If f^{\prime} changes from - to + at x, then there is a local minimum at x.
(b) If f^{\prime} changes from + to - at x, then there is a local maximum at x.
(c) If f^{\prime} does not change sign at x, then there is no min or max at x.
4) Finding Global Extrema on a closed domain $[a, b]$

In section 4.1 we only look at finding global extrema on one type of domain. We will deal with other domains in section 4.2

On a closed domain [a,b], Global Extrema of a differentiable function can only occur at critical points or endpoints.
a) Find all critical points of f.
b) Evaluate f at all critical points and both endpoints to determine the global extrema.

5) Inflection points - points where f changes concavity (i.e. where $f^{\prime \prime}$ changes sign)

To find inflection points, first solve $f^{\prime \prime}(x)=0$. These solutions are possible inflection points. These solutions also break the real-line into intervals on which $f^{\prime \prime}$ is either positive or negative.
a) If $f^{\prime \prime}$ changes sign at one of these points, then that point is an inflection point.
b) If $f^{\prime \prime}$ does not change sign at one of these points, then it is not an inflection point.

